In which triangle is the value of x equal to cos -1 4.3/6.7 ? Images may not be drawn to scale.
Question
Answer:
we know thatIn a right triangle the value of the cosine is equal to[tex]cos(x)=\frac{adjacent\ side\ angle\ x}{hypotenuse}[/tex]and the value of the sine is equal to[tex]sin(x)=\frac{opposite\ side\ angle\ x}{hypotenuse}[/tex]soFirst case[tex]adjacent\ side\ angle\ x=4.3\ units[/tex][tex]hypotenuse=6.7\ units[/tex]substitute[tex]cos(x)=\frac{4.3}{6.7}[/tex][tex]x=cos^{-1} (\frac{4.3}{6.7})[/tex]thereforeThe first case is the solutionSecond case[tex]opposite\ side\ angle\ x=4.3\ units[/tex][tex]hypotenuse=6.7\ units[/tex]substitute[tex]sin(x)=\frac{4.3}{6.7}[/tex][tex]x=sin^{-1} (\frac{4.7}{6.7})[/tex]thereforeThe second case is not the solutionThird case[tex]adjacent\ side\ angle\ x=6.7\ units[/tex][tex]hypotenuse=4.3\ units[/tex]Note The hypotenuse cannot be smaller than the adjacent leg or the opposite leg. This problem has errors substitute[tex]cos(x)=\frac{6.7}{4.3}[/tex][tex]x=cos^{-1} (\frac{6.7}{4.3})[/tex]thereforeThe third case is not the solutionthe solution is the first casesee the attached figure
solved
algebra
10 months ago
1983