Drag the system of equation to the point that represents the solution to the system.See attachment

Question
Answer:
solving of the system equation:  2x-y=-13 ⇒(1)   and    y=x+9 ⇒(2)
by substituting from (2) at (1)
2x-(x+9)=-13
2x-x-9=-13
x=-4 ⇒ substituting at (2)  ∴  y = -4+9 = 5
The point that represents the solution to the system = (-4,5)
========================================================

solving of the system equation: 3x+2y=10  ⇒(1)  and  6x-y=10  ⇒(2)
by multiplying equation (2) ⇒    12x-2y=20 ⇒(3)
adding (1) and (3)
                            15 x = 30 ⇒   x=2
from equation (2)  6x-y =10  ⇒⇒⇒ y = 6x-10 =12-10=2
The point that represents the solution to the system = (2,2)
=======================================================

solving of the system equation: 4x-3y=5  ⇒(1)  and  3x+2y=-9  ⇒(2)
solve for x, y
we find   x=-1  and y=-3

The point that represents the solution to the system = (-1,-3)
=======================================================

solving of the system equation:  x+y=7 ⇒(1)   and    x-y=-1 ⇒(2)
adding (1) and (2)
                           2x=6  ⇒⇒⇒ x = 3
substitute at (1)
                         y =7-x=7-3=4
The point that represents the solution to the system = (3,4)
=======================================================

solving of the system equation: y=3x-7  ⇒(1)  and  y=2x-5  ⇒(2)
equating (1) and (2)
solve for x and y
we find  x=2  ⇒⇒⇒ y = -1
The point that represents the solution to the system = (2,-1)
=======================================================

The system equation : y = 6    and  x =-5
The point that represents the solution to the system = (-5,6)
=======================================================
The attached figure represent a conclusion for the answer

solved
general 11 months ago 1857