In rectangle abcd, diagonal ac, which is 20 inches in length

Question
Answer:
The question is incomplete. The complete question is attached below.Answer:(a). AB = 16.4 in(b) BC = 11.5 inStep-by-step explanation:From the rectangle ABCD shown below,AB is the base of rectangle and CB is the altitude of the rectangle.Given:AC = 20 in(a)From triangle ABC,Applying cosine ratio for angle 35°, we get:[tex]\cos(35)=\frac{AB}{AC}\\AB=AC\times \cos(35)\\AB=20\times \cos(35)=16.38\approx 16.4\ in[/tex]Therefore, AB = 16.4 in(b)Applying sine ratio for angle 35°, we get:[tex]\sin(35)=\frac{CB}{AC}\\CB=AC\times \sin(35)\\AB=20\times \sin(35)=11.47\approx 11.5\ in[/tex]Therefore, CB = 11.5 in
solved
general 10 months ago 1084