Triangle RST has sides measuring 22 inches and 13 inches and a perimeter of 50 inches. What is the area of triangle RST? Round to the nearest square inch. (using heron's formula)
Question
Answer:
[tex]\bf \textit{Heron's Area Formula}\\\\
A=\sqrt{s(s-a)(s-b)(s-c)}\qquad
\begin{cases}
a=22\\
b=13\\
c=\stackrel{perimeter}{50}-22-13\\
\qquad 15\\
s=\frac{a+b+c}{2}\\
\qquad 25
\end{cases}
\\\\\\
A=\sqrt{25(25-22)(25-13)(25-15)}\implies A=\sqrt{25(3)(12)(10)}
\\\\\\
A=\sqrt{25(360)}\implies A=\sqrt{9000}\implies A\approx 94.868329805[/tex]
solved
general
10 months ago
2058