What is the period of the function f(x)=cos2x 1/2π/2π2
Question
Answer:
Answer:πStep-by-step explanation:General form of the cosine function is:[tex]y(x)=Acos(\omega x +\phi)[/tex]Where:[tex]A= Amplitude\hspace{3} of \hspace{3} the\hspace{3} function\\\omega=Angular\hspace{3} frequency\\\phi=Phase\hspace{3} shift[/tex]The frequency of the function is given by the following equation:[tex]f=\frac{\omega}{2 \pi}[/tex]The period is the reciprocal of the frequency, so:[tex]T=\frac{1}{f} =\frac{2 \pi}{\omega}[/tex]From the equation provided, you can see that the angular frequency is 2. Therefore, the periodof the function is:[tex]T=\frac{2 \pi}{\omega} =\frac{2\pi}{2} =\pi[/tex]
solved
general
10 months ago
3590