(3x^(2) 9x 6)/(5x^(2)-20)

Question
Answer:
$\frac{ 3\left( {x}^{2}+3x+2 \right) }{ 5{x}^{2}-20 }$
$\frac{ 3\left( {x}^{2}+3x+2 \right) }{ 5\left( {x}^{2}-4 \right) }$
$\frac{ 3\left( {x}^{2}+2x+x+2 \right) }{ 5\left( {x}^{2}-4 \right) }$
$\frac{ 3\left( {x}^{2}+2x+x+2 \right) }{ 5\left( x-2 \right) \times \left( x+2 \right) }$
$\frac{ 3\left( x \times \left( x+2 \right)+x+2 \right) }{ 5\left( x-2 \right) \times \left( x+2 \right) }$
$\frac{ 3\left( x+2 \right) \times \left( x+1 \right) }{ 5\left( x-2 \right) \times \left( x+2 \right) }$
$\frac{ 3\left( x+1 \right) }{ 5\left( x-2 \right) }$
$\frac{ 3x+3 }{ 5\left( x-2 \right) }$
$\frac{ 3x+3 }{ 5x-10 }$
solved
general 11 months ago 1678