4The diagram below, not drawn to scale, shows two triangles, JLK and MLP, with JK parallel to ML. LM = MP,KLP is a straight line e JLM = 22° and angle LMP-36°144360Calculate, giving reasons for your answers, the measure of each of the following:i. ZMLPii. ZLJKiii. LJKLiv. ZKLJ​

Question
Answer:
Answer:∠MLP = 72° ,           ∠LJK = 22° ,            ∠JKL = 72° ,          ∠KLJ  =  86°Step-by-step explanation:Here, given In ΔJLK and  ΔMLPHere,  JK  II  ML,  LM = MP ∠JLM = 22° and  ∠LMP = 36°Now, As angles opposite to equal sides are equal.⇒ ∠MLP = ∠MPL  = x°Now, in  ΔMLPBy ANGLE SUM PROPERTY:   ∠MLP + ∠MPL  + ∠LMP = 180°⇒ x° + x° + 36° = 180°⇒ 2 x  = 180 - 36 = 144or, x  = 72°⇒ ∠MLP = ∠MPL  = 72°Now,as  JK  II  ML ⇒ ∠LJK = ∠JLM = 22° ( Alternate pair of angles) Now, by the measure of straight angle:∠MLP + ∠JLM + ∠JLK = 180°  ( Straight angle)⇒ 72° + 22° + ∠JLK = 180° or, ∠JLK  =  86°In , in  ΔJLKBy ANGLE SUM PROPERTY:   ∠JKL + ∠JLK  + ∠LJK = 180°⇒  ∠JKL + 86° + 22° = 180°⇒ ∠JKL   = 180 - 108 = 72 , or ∠JKL = 72°Hence, from  above proof ,  ∠MLP = 72° , ∠LJK = 22° , ∠JKL = 72° ,∠KLJ  =  86°
solved
general 10 months ago 6999