Question helpa. a hemispherical bowl of radius a contains water to a depth h. find the volume of the water in the bowl.

Question
Answer:
The volume of the hemisphere is:
_________________________________________________________
" \frac{2}{3} [/tex] [tex] \pi [/tex] * h³ " ; 
 
or; write as:  " [tex] \frac{2 \pi h^3}{3} [/tex] " .
_________________________________________________________
Explanation:
_________________________________________________________
The formula/equation for the volume, "V", of a sphere:

V = ([tex] \frac{4}{3}[/tex]) * [tex] \pi [/tex] * r³ ;

The depth; or, height, "h"; would represent the "radius", "r" .

So, the volume would be:

V = [tex] \frac{1}{2} [/tex] * [tex] \frac{4}{3} [/tex] * [tex] \pi [/tex] * h³ ;
_________________________________________________________
Note:  " [tex] \frac{1}{2} [/tex] * [tex] \frac{4}{3} [/tex] " ; 

                 = [tex] \frac{(1*4)}{(2*3)} = \frac{4}{6} = \frac{(4/2)}{(6/2)} = \frac{2}{3} [/tex] ;
_________________________________________________________
The volume of the hemisphere is:

" \frac{2}{3} [/tex] [tex] \pi [/tex] * h³ . "

or; write as:  " [tex] \frac{2 \pi h^3}{3} [/tex] " .
_________________________________________________________
solved
general 10 months ago 1779