What is the factored form of 8x^24-27y^6

Question
Answer:
Factoring:  [tex]8x^{24}-27y^6[/tex]  
Theory : A difference of two perfect cubes,  [tex]a^3-b^3[/tex] can be factored into              [tex](a-b)*(a^2+ab+b^2)[/tex]
Proof :  [tex](a-b)*(a^2+ab+b^2)=[/tex]            [tex]a^3+a^2b+ab^2-ba^2-b^2a-b^3=[/tex]            [tex]a^3+(a^2b-ba^2)+(ab^2-b^2a)-b^3=[/tex]            [tex]a^3+0+0+b^3=[/tex]            [tex]a^3+b^3[/tex]
Check :  8  is the cube of  2  
Check :  27  is the cube of   3  Check :   [tex]x^{24}[/tex] is the cube of    [tex]x^8[/tex]
Check :  [tex]y^6[/tex] is the cube of    [tex]y^2[/tex]
Factorization is :             [tex](2x^8 - 3y^2)*(4x^{16} + 6x^8y^2 + 9y^4)[/tex]
solved
general 10 months ago 1098