Consider the graph of the linear function h(x) = βx + 5. Which could you change to move the graph down 3 units?
Question
Answer:
[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\\\
% left side templates
\begin{array}{llll}
f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
y=&{{ A}}({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}}
\\ \quad \\
f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}}
\\ \quad \\
f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}}
\end{array}\\\\
--------------------\\\\[/tex][tex]\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}[/tex]
[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}}[/tex]
with that template in mind, let's see
[tex]\bf h(x)=-x+5\implies h(x)=\stackrel{A}{-1}(\stackrel{B}{1}x\stackrel{C}{+0})\stackrel{D}{+5}[/tex]
a shift down by 3 units, means a vertical shift downwards, so D needs to drop by 3 units.
[tex]\bf h(x)=\stackrel{A}{-1}(\stackrel{B}{1}x\stackrel{C}{+0})\boxed{\stackrel{D}{+5-3}}\implies h(x)=-1(1x+0)+2 \\\\\\ h(x)=-x+2[/tex]
solved
general
10 months ago
7971