Given A = {(1, 3)(-1, 5}(6, 4)}, B = {(2, 0)(4, 6)(-4, 5)(0, 0)} and C = {(1, 1)(0, 2)(0, 3)(0, 4)(-3, 5)}, answer the following multiple choice question:From the list of sets A, B, and C above, choose the set of relations that correctly represents a function

Question
Answer:
Answer with Explanation:A relation in a set is said to be function, if every first element of an ordered pair in a set is  related with unique element of second element.No,two distinct second element of an ordered pair,has same first element.For,example ,{(1,2),(1,3),(4,5)}, is not a function but it is a relation. In Ordered pair, (x,y)x=First Elementy= Second Element→In Set AFirst Element              Second Element  1                                           3  -1                                          5  6                                          4Every First  element of set A has unique second element. So, it is a function.→In Set BFirst Element              Second Element  2                                          0  4                                          6  -4                                          5    0                                          0Every First  element of set B has unique second element and no two distinct Second element of set B,has same first element. So, it is a function.→In Set CFirst Element              Second Element  1                                           1  0                                          2  0                                          3  -3                                          5As, two same first element of set C has distinct second element. So, it is not a function.Set A and Set B , are functions,but Set C is not.
solved
general 10 months ago 3927